TY - JOUR
T1 - Acute Whole-Body Vibration Reduces Post-Activation Depression in the Triceps Surae Muscle
AU - Krause, Anne
AU - Gollhofer, Albert
AU - Lee, Kyungsoo
AU - Freyler, Kathrin
AU - Becker, Tobias
AU - Kurz, Alexander
AU - Ritzmann, Ramona
PY - 2020/8
Y1 - 2020/8
N2 - Purpose. Acute whole-body vibration (WBV) is known to enhance neuromuscular activation. Especially mechanisms which act presynaptically are discussed to be involved in this modulation, but evidence is still limited. Therefore, this study aimed to investigate if 2 min of WBV might impact the premotoneuronal mechanism of post-activation depression (PAD).
Methods. PAD in m. soleus was assessed by paired-pulse stimulation in 28 healthy participants prior, 2 min, 4 min and 10 min after 2 min of side-alternating WBV (10 Hz, 2 mm). Methodologies involved electromyography (m. soleus, m. tibialis anterior) and goniometric recordings (ankle, knee joint). H-reflexes were elicited with peripheral nerve stimulation and assessed by means of conditioned H-reflexes (ISI 1 s, Hcond) versus control H-reflexes (ISI10, H).
Results. Hcond/H was significantly enhanced by +55% (2 min), +32% (4 min) and +35% (10 min) following WBV (P < 0.05). Baseline muscle activity and joint positions were shown to be reliable (Cronbach's α values >0.990) throughout the testing procedure.
Conclusion. Vibratory-induced spinal inhibition is accompanied by diminished PAD at the presynaptic terminals which interconnect the Ia afferents with the α-motoneuron. Functionally, the PAD reduction might explain enhanced motor performance following vibration therapy, but future studies will be needed to verify this assumption.
AB - Purpose. Acute whole-body vibration (WBV) is known to enhance neuromuscular activation. Especially mechanisms which act presynaptically are discussed to be involved in this modulation, but evidence is still limited. Therefore, this study aimed to investigate if 2 min of WBV might impact the premotoneuronal mechanism of post-activation depression (PAD).
Methods. PAD in m. soleus was assessed by paired-pulse stimulation in 28 healthy participants prior, 2 min, 4 min and 10 min after 2 min of side-alternating WBV (10 Hz, 2 mm). Methodologies involved electromyography (m. soleus, m. tibialis anterior) and goniometric recordings (ankle, knee joint). H-reflexes were elicited with peripheral nerve stimulation and assessed by means of conditioned H-reflexes (ISI 1 s, Hcond) versus control H-reflexes (ISI10, H).
Results. Hcond/H was significantly enhanced by +55% (2 min), +32% (4 min) and +35% (10 min) following WBV (P < 0.05). Baseline muscle activity and joint positions were shown to be reliable (Cronbach's α values >0.990) throughout the testing procedure.
Conclusion. Vibratory-induced spinal inhibition is accompanied by diminished PAD at the presynaptic terminals which interconnect the Ia afferents with the α-motoneuron. Functionally, the PAD reduction might explain enhanced motor performance following vibration therapy, but future studies will be needed to verify this assumption.
U2 - 10.1016/j.humov.2020.102655
DO - 10.1016/j.humov.2020.102655
M3 - Journal articles
SN - 0167-9457
VL - 72
JO - Human movement science
JF - Human movement science
M1 - 102655
ER -