TY - JOUR
T1 - Altered tension cost in (TG(mREN-2)27) rats overexpressing the mouse renin gene
AU - Zobel, Carsten
AU - Zavidou-Saroti, Persephone
AU - Bölck, Birgit
AU - Brixius, Klara
AU - Reuter, Hannes
AU - Frank, Konrad
AU - Diedrichs, Holger
AU - Müller-Ehmsen, Jochen
AU - Bloch, Wilhelm
AU - Schwinger, Robert H G
PY - 2007/1/1
Y1 - 2007/1/1
N2 - The present study aimed to characterize cardiac hypertrophy induced by activation of the renin-angiotensin system in terms of functional alterations on the level of the contractile proteins, employing transgenic rats harboring the mouse renin gene (TGR(mREN2)27). Ca2+-dependent tension and myosin ATPase activity were measured in skinned fiber preparations obtained from TGR(mREN2)27 and from age-matched Sprague-Dawley rats (SPDR). Western blots for troponin I (TnI) and troponin T (TnT) were performed and the phosphorylation status of TnI were evaluated in myocardial preparations. TnT and myosin heavy chain (MHC) isoforms were analyzed by RT-PCR. The pCa/tension relationship was shifted to the right in TGR(mREN2)27 compared to SPDR as indicated by increased Ca2+-concentrations required for half maximal activation of tension (SPDR 5.80, 95% confidence limits 5.77-5.82 vs. TGR(mREN2)27 5.69, 95% confidence limits 5.67-5.72, pCa units), while maximal developed tension was unaltered. Even more pronounced was the shift in the relationship between pCa and myosin-ATPase (SPDR 6.01, 95% confidence limits 5.99-6.03 vs. TGR(mREN2)27 5.77, 95% confidence limits 5.73-5.79, pCa units). The maximal myosin-ATPase activity was reduced in TGR(mREN2)27 compared to SPDR, respectively (211.0 +/- 28.77 micromol ADP/s vs. 271.6 +/- 43.66 micromol ADP/s, P < 0.05). Tension cost (ATPase activity/tension) was significantly reduced in TGR(mREN2)27. The beta-MHC expression was significantly increased in TGR(mREN2)27. There was no isoform shift for TnT (protein and mRNA), as well as TnI, and no alteration of the phosphorylation of TnI in TGR(mREN2)27 compared to SPRD. The present study demonstrates that cardiac hypertrophy, induced by an activation of the renin-angiotensin system, leads to adapting alterations on the level of the contractile filaments, which reduce tension cost.
AB - The present study aimed to characterize cardiac hypertrophy induced by activation of the renin-angiotensin system in terms of functional alterations on the level of the contractile proteins, employing transgenic rats harboring the mouse renin gene (TGR(mREN2)27). Ca2+-dependent tension and myosin ATPase activity were measured in skinned fiber preparations obtained from TGR(mREN2)27 and from age-matched Sprague-Dawley rats (SPDR). Western blots for troponin I (TnI) and troponin T (TnT) were performed and the phosphorylation status of TnI were evaluated in myocardial preparations. TnT and myosin heavy chain (MHC) isoforms were analyzed by RT-PCR. The pCa/tension relationship was shifted to the right in TGR(mREN2)27 compared to SPDR as indicated by increased Ca2+-concentrations required for half maximal activation of tension (SPDR 5.80, 95% confidence limits 5.77-5.82 vs. TGR(mREN2)27 5.69, 95% confidence limits 5.67-5.72, pCa units), while maximal developed tension was unaltered. Even more pronounced was the shift in the relationship between pCa and myosin-ATPase (SPDR 6.01, 95% confidence limits 5.99-6.03 vs. TGR(mREN2)27 5.77, 95% confidence limits 5.73-5.79, pCa units). The maximal myosin-ATPase activity was reduced in TGR(mREN2)27 compared to SPDR, respectively (211.0 +/- 28.77 micromol ADP/s vs. 271.6 +/- 43.66 micromol ADP/s, P < 0.05). Tension cost (ATPase activity/tension) was significantly reduced in TGR(mREN2)27. The beta-MHC expression was significantly increased in TGR(mREN2)27. There was no isoform shift for TnT (protein and mRNA), as well as TnI, and no alteration of the phosphorylation of TnI in TGR(mREN2)27 compared to SPRD. The present study demonstrates that cardiac hypertrophy, induced by an activation of the renin-angiotensin system, leads to adapting alterations on the level of the contractile filaments, which reduce tension cost.
KW - Animals
KW - Animals, Genetically Modified
KW - Blotting, Western
KW - Calcium
KW - Cardiomegaly
KW - Disease Models, Animal
KW - Isometric Contraction
KW - Linear Models
KW - Male
KW - Mice
KW - Models, Cardiovascular
KW - Muscle Tonus
KW - Myocardial Contraction
KW - Myosin Heavy Chains
KW - Myosins
KW - Papillary Muscles
KW - Phosphorylation
KW - RNA, Messenger
KW - Rats
KW - Rats, Sprague-Dawley
KW - Renin
KW - Reverse Transcriptase Polymerase Chain Reaction
KW - Troponin I
KW - Troponin T
U2 - 10.1007/s00421-006-0323-5
DO - 10.1007/s00421-006-0323-5
M3 - Journal articles
C2 - 17063360
SN - 1439-6319
VL - 99
SP - 121
EP - 132
JO - European journal of applied physiology
JF - European journal of applied physiology
IS - 2
ER -