TY - JOUR
T1 - Effects of the beta3-adrenergic agonist BRL 37344 on endothelial nitric oxide synthase phosphorylation and force of contraction in human failing myocardium
AU - Napp, Andreas
AU - Brixius, Klara
AU - Pott, Christian
AU - Ziskoven, Christoph
AU - Bölck, Birgit
AU - Mehlhorn, Uwe
AU - Schwinger, Robert H G
AU - Bloch, Wilhelm
PY - 2009/2/1
Y1 - 2009/2/1
N2 - BACKGROUND: In nonfailing myocardium, beta(3)-adrenergic signaling causes a decrease in contractility via endothelial nitric oxide synthase (eNOS) activation and nitric oxide (NO) release. This study investigates the hypothesis that beta(3)-adrenergic signaling undergoes alterations in failing myocardium.METHODS: We compared eNOS- and beta(3)-adrenoceptor expression using Western blot analysis in human nonfailing myocardium versus failing myocardium. With the use of immunohistochemistry, we investigated the distribution of the beta(3)-adrenoceptor protein and eNOS translocation and phosphorylation under basal conditions. beta(3)-adrenergic, eNOS activation, and inotropy were measured in failing myocardium using BRL37344 (BRL, a beta(3)-adrenoceptor agonist).RESULTS: beta(3)-adrenoceptor expression was increased in failing myocardium. Under basal conditions, Akt- and eNOS(Ser1177) phosphorylation were reduced in failing myocardium. During stimulation with BRL in failing myocardium, a further dephosphorylation of eNOS(Ser1177) and Akt was observed, whereas eNOS(Ser114) phosphorylation was increased. These results suggest a deactivation of eNOS via beta(3)-adrenergic stimulation. Nevertheless, BRL decreased contractility in failing myocardium, but this effect was not observed in the presence of the NO blocker L-NMA. In failing myocardium, the beta(3)-adrenoceptor was predominantly expressed in endothelial cells. In the cardiomyocytes, the beta(3)-adrenoceptor was mainly located at the intercalated disks.CONCLUSION: In failing cardiomyocytes, beta(3)-adrenergic stimulation seems to deactivate rather than activate eNOS. At the same time, beta(3)-adrenergic stimulation induced a NO-dependent negative inotropic effect. Because beta(3)-adrenoceptors are expressed mainly in the endothelium in failing myocardium, our observations suggest a paracrine-negative inotropic effect via NO liberation from the cardiac endothelial cells.
AB - BACKGROUND: In nonfailing myocardium, beta(3)-adrenergic signaling causes a decrease in contractility via endothelial nitric oxide synthase (eNOS) activation and nitric oxide (NO) release. This study investigates the hypothesis that beta(3)-adrenergic signaling undergoes alterations in failing myocardium.METHODS: We compared eNOS- and beta(3)-adrenoceptor expression using Western blot analysis in human nonfailing myocardium versus failing myocardium. With the use of immunohistochemistry, we investigated the distribution of the beta(3)-adrenoceptor protein and eNOS translocation and phosphorylation under basal conditions. beta(3)-adrenergic, eNOS activation, and inotropy were measured in failing myocardium using BRL37344 (BRL, a beta(3)-adrenoceptor agonist).RESULTS: beta(3)-adrenoceptor expression was increased in failing myocardium. Under basal conditions, Akt- and eNOS(Ser1177) phosphorylation were reduced in failing myocardium. During stimulation with BRL in failing myocardium, a further dephosphorylation of eNOS(Ser1177) and Akt was observed, whereas eNOS(Ser114) phosphorylation was increased. These results suggest a deactivation of eNOS via beta(3)-adrenergic stimulation. Nevertheless, BRL decreased contractility in failing myocardium, but this effect was not observed in the presence of the NO blocker L-NMA. In failing myocardium, the beta(3)-adrenoceptor was predominantly expressed in endothelial cells. In the cardiomyocytes, the beta(3)-adrenoceptor was mainly located at the intercalated disks.CONCLUSION: In failing cardiomyocytes, beta(3)-adrenergic stimulation seems to deactivate rather than activate eNOS. At the same time, beta(3)-adrenergic stimulation induced a NO-dependent negative inotropic effect. Because beta(3)-adrenoceptors are expressed mainly in the endothelium in failing myocardium, our observations suggest a paracrine-negative inotropic effect via NO liberation from the cardiac endothelial cells.
KW - Adrenergic beta-3 Receptor Agonists
KW - Adrenergic beta-Agonists
KW - Adult
KW - Cardiomyopathy, Dilated
KW - Ethanolamines
KW - Humans
KW - Immunohistochemistry
KW - Male
KW - Middle Aged
KW - Myocardial Contraction
KW - Myocardium
KW - Nitric Oxide Synthase
KW - Phosphorylation
KW - Stroke Volume
KW - Ventricular Function, Left
U2 - 10.1016/j.cardfail.2008.08.006
DO - 10.1016/j.cardfail.2008.08.006
M3 - Journal articles
C2 - 19181295
SN - 1532-8414
VL - 15
SP - 57
EP - 67
JO - Journal of cardiac failure
JF - Journal of cardiac failure
IS - 1
ER -