Estimation of Muscle Fascicle Orientation in Ultrasonic Images

Regina Pohle-Fröhlich.*, Christoph Dalitz., Charlotte Richter., Tobias Hahnen., Benjamin Stäudle, Kirsten Albracht.

*Korrespondierende*r Autor*in für diese Arbeit

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitrag - Aufsatz in KonferenzbandForschungBegutachtung

Abstract

We compare four different algorithms for automatically estimating the muscle fascicle angle from ultrasonic images: the vesselness filter, the Radon transform, the projection profile method and the gray level cooccurence matrix (GLCM). The algorithm results are compared to ground truth data generated by three different experts on 425 image frames from two videos recorded during different types of motion. The best agreement with the ground truth data was achieved by a combination of pre-processing with a vesselness filter and measuring the angle with the projection profile method. The robustness of the estimation is increased by applying the algorithms to subregions with high gradients and performing a LOESS fit through these estimates.
OriginalspracheEnglisch
TitelVISIGRAPP 2020 - Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications : proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications : Valletta, Malta, February 27-29, 2019
Seitenumfang8
Band5
ErscheinungsortSétubal
Herausgeber (Verlag)Scitepress
Erscheinungsdatum2020
Seiten79-86
ISBN (Print)978-989-758-402-2
DOIs
PublikationsstatusVeröffentlicht - 2020
VeranstaltungInternational Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Valletta, Malta
Dauer: 27.02.202029.02.2020
Konferenznummer: 15

Fachgebiete und Schlagwörter

  • Gray Level Cooccurrence
  • Orientation Angle
  • Projection Profile
  • Radon Transform
  • Texture Direction
  • Vesselness Filter

Fingerprint

Untersuchen Sie die Forschungsthemen von „Estimation of Muscle Fascicle Orientation in Ultrasonic Images“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitation