TY - JOUR
T1 - Isoform specificity of cardiac glycosides binding to human Na+,K+-ATPase alpha1beta1, alpha2beta1 and alpha3beta1
AU - Hauck, Christian
AU - Potter, Tatjana
AU - Bartz, Michaela
AU - Wittwer, Thorsten
AU - Wahlers, Thorsten
AU - Mehlhorn, Uwe
AU - Scheiner-Bobis, Georgios
AU - McDonough, Alicia A
AU - Bloch, Wilhelm
AU - Schwinger, Robert H G
AU - Müller-Ehmsen, Jochen
PY - 2009/11/10
Y1 - 2009/11/10
N2 - Cardiac glycosides inhibit the Na(+),K(+)-ATPase and are used for the treatment of symptomatic heart failure and atrial fibrillation. In human heart three isoforms of Na(+),K(+)-ATPase are expressed: alpha(1)beta(1), alpha(2)beta(1) and alpha(3)beta(1). It is unknown, if clinically used cardiac glycosides differ in isoform specific affinities, and if the isoforms have specific subcellular localization in human cardiac myocytes. Human Na(+),K(+)-ATPase isoforms alpha(1)beta(1), alpha(2)beta(1) and alpha(3)beta(1) were expressed in yeast which has no endogenous Na(+),K(+)-ATPase. Isoform specific affinities of digoxin, digitoxin, beta-acetyldigoxin, methyldigoxin and ouabain were assessed in [(3)H]-ouabain binding assays in the absence or presence of K(+) (each n=5). The subcellular localizations of the Na(+),K(+)-ATPase isoforms were investigated in isolated human atrial cardiomyocytes by immunohistochemistry. In the absence of K(+), methyldigoxin (alpha(1)>alpha(3)>alpha(2)) and ouabain (alpha(1)=alpha(3)>alpha(2)) showed distinct isoform specific affinities, while for digoxin, digitoxin and beta-acetyldigoxin no differences were found. In the presence of K(+), also digoxin (alpha(2)=alpha(3)>alpha(1)) and beta-acetyldigoxin (alpha(1)>alpha(3)) had isoform specificities. A comparison between the cardiac glycosides demonstrated highly different affinity profiles for the isoforms. Immunohistochemistry showed that all three isoforms are located in the plasma membrane and in intracellular membranes, but only alpha(1)beta(1) and alpha(2)beta(1) are located in the T-tubuli. Cardiac glycosides show distinct isoform specific affinities and different affinity profiles to Na(+),K(+)-ATPase isoforms which have different subcellular localizations in human cardiomyocytes. Thus, in contrast to current notion, different cardiac glycoside agents may significantly differ in their pharmacological profile which could be of hitherto unknown clinical relevance.
AB - Cardiac glycosides inhibit the Na(+),K(+)-ATPase and are used for the treatment of symptomatic heart failure and atrial fibrillation. In human heart three isoforms of Na(+),K(+)-ATPase are expressed: alpha(1)beta(1), alpha(2)beta(1) and alpha(3)beta(1). It is unknown, if clinically used cardiac glycosides differ in isoform specific affinities, and if the isoforms have specific subcellular localization in human cardiac myocytes. Human Na(+),K(+)-ATPase isoforms alpha(1)beta(1), alpha(2)beta(1) and alpha(3)beta(1) were expressed in yeast which has no endogenous Na(+),K(+)-ATPase. Isoform specific affinities of digoxin, digitoxin, beta-acetyldigoxin, methyldigoxin and ouabain were assessed in [(3)H]-ouabain binding assays in the absence or presence of K(+) (each n=5). The subcellular localizations of the Na(+),K(+)-ATPase isoforms were investigated in isolated human atrial cardiomyocytes by immunohistochemistry. In the absence of K(+), methyldigoxin (alpha(1)>alpha(3)>alpha(2)) and ouabain (alpha(1)=alpha(3)>alpha(2)) showed distinct isoform specific affinities, while for digoxin, digitoxin and beta-acetyldigoxin no differences were found. In the presence of K(+), also digoxin (alpha(2)=alpha(3)>alpha(1)) and beta-acetyldigoxin (alpha(1)>alpha(3)) had isoform specificities. A comparison between the cardiac glycosides demonstrated highly different affinity profiles for the isoforms. Immunohistochemistry showed that all three isoforms are located in the plasma membrane and in intracellular membranes, but only alpha(1)beta(1) and alpha(2)beta(1) are located in the T-tubuli. Cardiac glycosides show distinct isoform specific affinities and different affinity profiles to Na(+),K(+)-ATPase isoforms which have different subcellular localizations in human cardiomyocytes. Thus, in contrast to current notion, different cardiac glycoside agents may significantly differ in their pharmacological profile which could be of hitherto unknown clinical relevance.
KW - Animals
KW - Cardiac Glycosides
KW - Cell Membrane
KW - H(+)-K(+)-Exchanging ATPase
KW - Heart Failure
KW - Humans
KW - Immunohistochemistry
KW - Intracellular Space
KW - Isoenzymes
KW - Myocytes, Cardiac
KW - Ouabain
KW - Protein Binding
KW - Saccharomyces cerevisiae
KW - Sodium-Potassium-Exchanging ATPase
KW - Substrate Specificity
U2 - 10.1016/j.ejphar.2009.08.039
DO - 10.1016/j.ejphar.2009.08.039
M3 - Journal articles
C2 - 19751721
SN - 1879-0712
VL - 622
SP - 7
EP - 14
JO - European journal of pharmacology
JF - European journal of pharmacology
IS - 1-3
ER -