Tactical pattern recognition in soccer games by means of special self-organizing maps

Titel in Übersetzung: Taktische Mustererkennung mittels spezieller Kohonenkarten

Andreas Grunz, Daniel Memmert, Jürgen Perl

    Publikation: Beitrag in FachzeitschriftZeitschriftenaufsätzeForschung

    Abstract

    Increasing amounts of data are collected in sports due to technological progress. From a typical soccer game, for instance, the positions of the 22 players and the ball can be recorded 25 times per second, resulting in approximately 135.000 datasets. Without computational assistance it is almost impossible to extract relevant information from the complete data. This contribution introduces a hierarchical architecture of artificial neural networks to find tactical patterns in those positional data. The results from the classification using the hierarchical setup were compared to the results gained by an expert manually classifying the different categories. Short and long game initiations can be detected with relative high accuracy leading to the conclusion that the hierarchical architecture is capable of recognizing different tactical patterns and variations in these patterns. Remaining problems are discussed and ideas concerning further improvements of classification are indicated.

    Titel in ÜbersetzungTaktische Mustererkennung mittels spezieller Kohonenkarten
    OriginalspracheEnglisch
    ZeitschriftHuman movement science
    Jahrgang31
    Ausgabenummer2
    Seiten (von - bis)334-343
    Seitenumfang10
    ISSN0167-9457
    DOIs
    PublikationsstatusVeröffentlicht - 01.04.2012

    Fachgebiete und Schlagwörter

    • Analyse
    • Bewegungsmuster
    • Fußball
    • Fußballspiel
    • Netzwerk, neuronales
    • Neuromotorik
    • Spielanalyse
    • Taktik, sportliche

    Fingerprint

    Untersuchen Sie die Forschungsthemen von „Taktische Mustererkennung mittels spezieller Kohonenkarten“. Zusammen bilden sie einen einzigartigen Fingerprint.

    Zitation