TY - JOUR
T1 - Training alters the skeletal muscle antioxidative capacity in non-insulin-dependent type 2 diabetic men
AU - Brinkmann, C
AU - Chung, N
AU - Schmidt, U
AU - Kreutz, T
AU - Lenzen, E
AU - Schiffer, T
AU - Geisler, S
AU - Graf, C
AU - Montiel Garcia, Georgina
AU - Renner, R
AU - Bloch, W
AU - Brixius, K
N1 - © 2011 John Wiley & Sons A/S.
PY - 2012/8/1
Y1 - 2012/8/1
N2 - The present study analyzes the oxidative stress situation in the skeletal muscle of overweight/obese men suffering from non-insulin-dependent type 2 diabetes mellitus [T2DM, n=16, years=61±7, body mass index (BMI)=31±4 kg/m(2) ] and BMI-matched non-diabetic male control subjects (CON, n=7, years=53±6, BMI=30±4 kg/m(2) ). Furthermore, it investigates whether physical training can alter the skeletal muscle antioxidative capacity of T2DM patients at rest. Molecule content analyses (immunohistochemical stainings) of 8-iso-prostaglandin-F2α (8-Iso-PGF), superoxide dismutase-2 (SOD2), glutathione peroxidase-1 (GPX1), peroxiredoxin isoforms (PRDX 1-6) and heat-shock-protein-70 (HSP70) were performed in biopsies taken from the vastus lateralis muscle. Under basal conditions, 8-Iso-PGF was significantly decreased in T2DM patients (-35.7%), whereas PRDX2 and PRDX6 were significantly increased relative to CON (+82.6%; +82.3%). Differences were neither observed in SOD2 nor in GPX1 or PRDX1, 3, 4, 5 density. Regular physical activity (moderate endurance or resistance training twice a week for 3 months) did not alter PRDX1, 2, 3, 4, 6 in the skeletal muscle of T2DM patients, but significantly increased SOD2 (+65.9%), GPX1 (+62.4%), PRDX5 (+37.5%), and HSP70 (+48.5%). Overweight/obese men with non-insulin-dependent T2DM exhibit up-regulated cytosolic peroxiredoxin contents relative to BMI-matched controls. Regular training further up-regulates cytosolic and mitochondrial antioxidative enzymes in T2DM patients and improves their cellular protection systems. This may contribute to a retardation of the disease's progression.
AB - The present study analyzes the oxidative stress situation in the skeletal muscle of overweight/obese men suffering from non-insulin-dependent type 2 diabetes mellitus [T2DM, n=16, years=61±7, body mass index (BMI)=31±4 kg/m(2) ] and BMI-matched non-diabetic male control subjects (CON, n=7, years=53±6, BMI=30±4 kg/m(2) ). Furthermore, it investigates whether physical training can alter the skeletal muscle antioxidative capacity of T2DM patients at rest. Molecule content analyses (immunohistochemical stainings) of 8-iso-prostaglandin-F2α (8-Iso-PGF), superoxide dismutase-2 (SOD2), glutathione peroxidase-1 (GPX1), peroxiredoxin isoforms (PRDX 1-6) and heat-shock-protein-70 (HSP70) were performed in biopsies taken from the vastus lateralis muscle. Under basal conditions, 8-Iso-PGF was significantly decreased in T2DM patients (-35.7%), whereas PRDX2 and PRDX6 were significantly increased relative to CON (+82.6%; +82.3%). Differences were neither observed in SOD2 nor in GPX1 or PRDX1, 3, 4, 5 density. Regular physical activity (moderate endurance or resistance training twice a week for 3 months) did not alter PRDX1, 2, 3, 4, 6 in the skeletal muscle of T2DM patients, but significantly increased SOD2 (+65.9%), GPX1 (+62.4%), PRDX5 (+37.5%), and HSP70 (+48.5%). Overweight/obese men with non-insulin-dependent T2DM exhibit up-regulated cytosolic peroxiredoxin contents relative to BMI-matched controls. Regular training further up-regulates cytosolic and mitochondrial antioxidative enzymes in T2DM patients and improves their cellular protection systems. This may contribute to a retardation of the disease's progression.
U2 - 10.1111/j.1600-0838.2010.01273.x
DO - 10.1111/j.1600-0838.2010.01273.x
M3 - Journal articles
C2 - 21477162
SN - 1600-0838
SN - 0905-7188
VL - 22
SP - 462
EP - 470
JO - Scandinavian journal of medicine & science in sports
JF - Scandinavian journal of medicine & science in sports
IS - 4
ER -