TY - JOUR
T1 - Trunk-acceleration based assessment of gait parameters in older persons: a comparison of reliability and validity of four inverted pendulum based estimations
AU - Zijlstra, Agnes
AU - Zijlstra, Wiebren
PY - 2013
Y1 - 2013
N2 - Inverted pendulum (IP) models of human walking allow for wearable motion-sensor based estimations of spatio-temporal gait parameters during unconstrained walking in daily-life conditions. At present it is unclear to what extent different IP based estimations yield different results, and reliability and validity have not been investigated in older persons without a specific medical condition. The aim of this study was to compare reliability and validity of four different IP based estimations of mean step length in independent-living older persons. Participants were assessed twice and walked at different speeds while wearing a tri-axial accelerometer at the lower back. For all step-length estimators, test-retest intra-class correlations approached or were above 0.90. Intra-class correlations with reference step length were above 0.92 with a mean error of 0.0 cm when (1) multiplying the estimated center-of-mass displacement during a step by an individual correction factor in a simple IP model, or (2) adding an individual constant for bipedal stance displacement to the estimated displacement during single stance in a 2-phase IP model. When applying generic corrections or constants in all subjects (i.e. multiplication by 1.25, or adding 75% of foot length), correlations were above 0.75 with a mean error of respectively 2.0 and 1.2 cm. Although the results indicate that an individual adjustment of the IP models provides better estimations of mean step length, the ease of a generic adjustment can be favored when merely evaluating intra-individual differences. Further studies should determine the validity of these IP based estimations for assessing gait in daily life.
AB - Inverted pendulum (IP) models of human walking allow for wearable motion-sensor based estimations of spatio-temporal gait parameters during unconstrained walking in daily-life conditions. At present it is unclear to what extent different IP based estimations yield different results, and reliability and validity have not been investigated in older persons without a specific medical condition. The aim of this study was to compare reliability and validity of four different IP based estimations of mean step length in independent-living older persons. Participants were assessed twice and walked at different speeds while wearing a tri-axial accelerometer at the lower back. For all step-length estimators, test-retest intra-class correlations approached or were above 0.90. Intra-class correlations with reference step length were above 0.92 with a mean error of 0.0 cm when (1) multiplying the estimated center-of-mass displacement during a step by an individual correction factor in a simple IP model, or (2) adding an individual constant for bipedal stance displacement to the estimated displacement during single stance in a 2-phase IP model. When applying generic corrections or constants in all subjects (i.e. multiplication by 1.25, or adding 75% of foot length), correlations were above 0.75 with a mean error of respectively 2.0 and 1.2 cm. Although the results indicate that an individual adjustment of the IP models provides better estimations of mean step length, the ease of a generic adjustment can be favored when merely evaluating intra-individual differences. Further studies should determine the validity of these IP based estimations for assessing gait in daily life.
U2 - 10.1016/j.gaitpost.2013.04.021
DO - 10.1016/j.gaitpost.2013.04.021
M3 - Journal articles
SN - 0966-6362
VL - 38
SP - 940
EP - 944
JO - Gait & posture
JF - Gait & posture
IS - 4
ER -