Effects of high intensity training and high volume training on endothelial microparticles and angiogenic growth factors

Patrick Wahl, Felix Jansen, Silvia Achtzehn, Theresa Schmitz, Wilhelm Bloch, Joachim Mester, Nikos Werner

Publication: Contribution to journalJournal articlesResearchpeer-review

Abstract

AIMS: Endothelial microparticles (EMP) are complex vesicular structures shed from activated or apoptotic endothelial cells. As endurance exercise affects the endothelium, the objective of the study was to examine levels of EMP and angiogenic growth factors following different endurance exercise protocols.

METHODS: 12 subjects performed 3 different endurance exercise protocols: 1. High volume training (HVT; 130 min at 55% peak power output (PPO); 2. 4 × 4 min at 95% PPO; 3. 4 × 30 sec all-out. EMPs were quantified using flow cytometry after staining platelet-poor-plasma. Events positive for Annexin-V and CD31, and negative for CD42b, were classified as EMPs. Vascular endothelial growth factor (VEGF), migratory inhibiting factor (MIF) and hepatocyte growth factor (HGF) were determined by ELISA technique. For all these measurements venous blood samples were taken pre, 0', 30', 60' and 180' after each intervention. Furthermore, in vitro experiments were performed to explore the effect of collected sera on target endothelial functions and MP uptake capacities.

RESULTS: VEGF and HGF significantly increased after HIT interventions. All three interventions caused a significant decrease in EMP levels post exercise compared to pre values. The sera taken after exercise increased the uptake of EMP in target endothelial cells compared to sera taken under resting conditions, which was shown to be phosphatidylserin-dependent. Increased EMP uptake was associated with an improved protection of target cells against apoptosis. Sera taken prior and after exercise promoted target endothelial cell migration, which was abrogated after inhibition of VEGF.

CONCLUSION: Physical exercise leads to decreased EMP levels and promotes a phosphatidylserin-dependent uptake of EMP into target endothelial cells, which is associated with a protection of target cells against apoptosis.

Original languageEnglish
JournalPloS one
Volume9
Issue number4
Pages (from-to)e96024
ISSN1932-6203
DOIs
Publication statusPublished - 01.01.2014

Fingerprint

Dive into the research topics of 'Effects of high intensity training and high volume training on endothelial microparticles and angiogenic growth factors'. Together they form a unique fingerprint.

Citation