Publikationen: Beitrag in Fachzeitschrift › Zeitschriftenaufsätze › Forschung › Begutachtung
Mice Lacking the Matrilin Family of Extracellular Matrix Proteins Develop Mild Skeletal Abnormalities and Are Susceptible to Age-Associated Osteoarthritis. / Li, Ping; Fleischhauer, Lutz; Nicolae, Claudia et al.
in: International journal of molecular sciences, Jahrgang 21, Nr. 2, 666, 19.01.2020.Publikationen: Beitrag in Fachzeitschrift › Zeitschriftenaufsätze › Forschung › Begutachtung
}
TY - JOUR
T1 - Mice Lacking the Matrilin Family of Extracellular Matrix Proteins Develop Mild Skeletal Abnormalities and Are Susceptible to Age-Associated Osteoarthritis
AU - Li, Ping
AU - Fleischhauer, Lutz
AU - Nicolae, Claudia
AU - Prein, Carina
AU - Farkas, Zsuzsanna
AU - Saller, Maximilian Michael
AU - Prall, Wolf Christian
AU - Wagener, Raimund
AU - Heilig, Juliane
AU - Niehoff, Anja
AU - Clausen-Schaumann, Hauke
AU - Alberton, Paolo
AU - Aszodi, Attila
PY - 2020/1/19
Y1 - 2020/1/19
N2 - Matrilins (MATN1, MATN2, MATN3 and MATN4) are adaptor proteins of the cartilage extracellular matrix (ECM), which bridge the collagen II and proteoglycan networks. In humans, dominant-negative mutations in MATN3 lead to various forms of mild chondrodysplasias. However, single or double matrilin knockout mice generated previously in our laboratory do not show an overt skeletal phenotype, suggesting compensation among the matrilin family members. The aim of our study was to establish a mouse line, which lacks all four matrilins and analyze the consequence of matrilin deficiency on endochondral bone formation and cartilage function. Matn1-4-/- mice were viable and fertile, and showed a lumbosacral transition phenotype characterized by the sacralization of the sixth lumbar vertebra. The development of the appendicular skeleton, the structure of the growth plate, chondrocyte differentiation, proliferation, and survival were normal in mutant mice. Biochemical analysis of knee cartilage demonstrated moderate alterations in the extractability of the binding partners of matrilins in Matn1-4-/- mice. Atomic force microscopy (AFM) revealed comparable compressive stiffness but higher collagen fiber diameters in the growth plate cartilage of quadruple mutant compared to wild-type mice. Importantly, Matn1-4-/- mice developed more severe spontaneous osteoarthritis at the age of 18 months, which was accompanied by changes in the biomechanical properties of the articular cartilage. Interestingly, Matn4-/- mice also developed age-associated osteoarthritis suggesting a crucial role of MATN4 in maintaining the stability of the articular cartilage. Collectively, our data provide evidence that matrilins are important to protect articular cartilage from deterioration and are involved in the specification of the vertebral column.
AB - Matrilins (MATN1, MATN2, MATN3 and MATN4) are adaptor proteins of the cartilage extracellular matrix (ECM), which bridge the collagen II and proteoglycan networks. In humans, dominant-negative mutations in MATN3 lead to various forms of mild chondrodysplasias. However, single or double matrilin knockout mice generated previously in our laboratory do not show an overt skeletal phenotype, suggesting compensation among the matrilin family members. The aim of our study was to establish a mouse line, which lacks all four matrilins and analyze the consequence of matrilin deficiency on endochondral bone formation and cartilage function. Matn1-4-/- mice were viable and fertile, and showed a lumbosacral transition phenotype characterized by the sacralization of the sixth lumbar vertebra. The development of the appendicular skeleton, the structure of the growth plate, chondrocyte differentiation, proliferation, and survival were normal in mutant mice. Biochemical analysis of knee cartilage demonstrated moderate alterations in the extractability of the binding partners of matrilins in Matn1-4-/- mice. Atomic force microscopy (AFM) revealed comparable compressive stiffness but higher collagen fiber diameters in the growth plate cartilage of quadruple mutant compared to wild-type mice. Importantly, Matn1-4-/- mice developed more severe spontaneous osteoarthritis at the age of 18 months, which was accompanied by changes in the biomechanical properties of the articular cartilage. Interestingly, Matn4-/- mice also developed age-associated osteoarthritis suggesting a crucial role of MATN4 in maintaining the stability of the articular cartilage. Collectively, our data provide evidence that matrilins are important to protect articular cartilage from deterioration and are involved in the specification of the vertebral column.
KW - matrilin
KW - cartilage
KW - bone development
KW - articular cartilage
KW - osteoarthritis
UR - https://www.mendeley.com/catalogue/d4ac184e-492f-3076-9fb9-9ff4807cc8ef/
U2 - 10.3390/ijms21020666
DO - 10.3390/ijms21020666
M3 - Journal articles
C2 - 31963938
VL - 21
JO - International journal of molecular sciences
JF - International journal of molecular sciences
SN - 1422-0067
IS - 2
M1 - 666
ER -
ID: 5100446