Modulation of muscle-tendon interaction in the human triceps surae during an energy dissipation task

Amelie Werkhausen, Kirsten Albracht, Neil J Cronin, Rahel Meier, Jens Bojsen-Møller, Olivier R Seynnes

Publikation: Beitrag in FachzeitschriftZeitschriftenaufsätzeForschungBegutachtung

Abstract

The compliance of elastic elements allows muscles to dissipate energy safely during eccentric contractions. This buffering function is well documented in animal models but our understanding of its mechanism in humans is confined to non-specific tasks, requiring a subsequent acceleration of the body. The present study aimed to examine the behaviour of the human triceps surae muscle-tendon unit (MTU) during a pure energy dissipation task, under two loading conditions.Thirty-nine subjects performed a single-leg landing task, with- and without added mass. Ultrasound measurements were combined with 3D kinematics and kinetics to determine instantaneous length changes of MTUs, muscle fascicles, Achilles tendon and combined elastic elements.Gastrocnemius and soleus MTUs lengthened during landing. After a small concentric action, fascicles contracted eccentrically during most of the task, while plantarflexor muscles were activated. Combined elastic elements lengthened until peak ankle moment and recoiled thereafter, whilst no recoil was observed for the Achilles tendon. Adding mass resulted in greater negative work and MTU lengthening, which were accompanied by a greater stretch of tendon and elastic elements and a greater recruitment of the soleus muscle, without any further fascicle strain.Hence, the buffering action of elastic elements delimits the maximal strain and lengthening velocity of active muscle fascicles and is commensurate with loading constraints. In the present task, energy dissipation was modulated via greater MTU excursion and more forceful eccentric contractions. The distinct strain pattern of the Achilles tendon supports the notion that different elastic elements may not systematically fulfil the same function.

OriginalspracheEnglisch
ZeitschriftThe Journal of experimental biology
Jahrgang220
Ausgabenummer22
Seiten (von - bis)4141-4149
Seitenumfang9
ISSN0022-0949
DOIs
PublikationsstatusVeröffentlicht - 07.09.2017

Fingerprint

Untersuchen Sie die Forschungsthemen von „Modulation of muscle-tendon interaction in the human triceps surae during an energy dissipation task“. Zusammen bilden sie einen einzigartigen Fingerprint.

Zitation