Sit-stand and stand-sit transitions in older adults and patients with Parkinson's disease: event detection based on motion sensors versus force plates

Publikationen: Beitrag in FachzeitschriftZeitschriftenaufsätzeForschung

Standard

Sit-stand and stand-sit transitions in older adults and patients with Parkinson's disease: event detection based on motion sensors versus force plates. / Zijlstra, Agnes; Mancini, Martina; Lindemann, Ulrich; Chiari, Lorenzo; Zijlstra, Wiebren.

in: Journal of Neuroengineering and Rehabilitation, Jahrgang 9, 2012, S. 75.

Publikationen: Beitrag in FachzeitschriftZeitschriftenaufsätzeForschung

Harvard

APA

Vancouver

Bibtex

@article{bff177139cbe482ab54f6d3a94a65d1e,
title = "Sit-stand and stand-sit transitions in older adults and patients with Parkinson's disease: event detection based on motion sensors versus force plates",
abstract = "Background!!Motion sensors offer the possibility to obtain spatiotemporal measures of mobility-related activities such as sit-stand and stand-sit transitions. However, the application of new sensor-based methods for assessing sit-stand-sit performance requires the detection of crucial events such as seat on/off in the sensor-based data. Therefore, the aim of this study was to evaluate the agreement of detecting sit-stand and stand-sit events based on a novel body-fixed-sensor method with a force-plate based analysis.!!Methods!!Twelve older adults and 10 patients with mild to moderate Parkinson's disease with mean age of 70 years performed sit-stand-sit movements while trunk movements were measured with a sensor-unit at vertebrae L2-L4 and reaction forces were measured with separate force plates below the feet and chair. Movement onsets and ends were determined. In addition, seat off and seat on were determined based on forces acting on the chair. Data analysis focused on the agreement of the timing of sit-stand and stand-sit events as detected by the two methods.!!Results!!For the start and end of standing-up, only small delays existed for the start of forward trunk rotation and end of backward trunk rotation compared to movement onset/end as detected in the force-plate data. The end of forward trunk rotation had a small and consistent delay compared to seat off, whereas during sitting-down, the end of forward trunk rotation occurred earlier in relation to seat on. In detecting the end of sitting-down, backward trunk rotation ended after reaching the minimum in the below-feet vertical force signal. Since only small time differences existed between the two methods for detecting the start of sitting-down, longer movement durations were found for the sensor-based method. Relative agreement between the two methods in assessing movement duration was high (i.e. ICCs $ 0.75), except for duration of standing-up in the Parkinson's patients (ICC = 0.61).!!Conclusions!!This study demonstrated high agreement of body-fixed-sensor based detection of sit-stand and stand-sit events with that based on force plates in older adults and patients with mild to moderate Parkinson's disease. Further development and testing is needed to establish reliability for unstandardized performance in clinical and home settings.",
keywords = "Acceleration, Aged, Aged, 80 and over, Biomechanics, Data Interpretation, Statistical, Female, Humans, Independent Living, Lumbar Vertebrae/physiology, Male, Middle Aged, Mobility Limitation, Motion, Movement/physiology, Parkinson Disease/physiopathology, Posture/physiology",
author = "Agnes Zijlstra and Martina Mancini and Ulrich Lindemann and Lorenzo Chiari and Wiebren Zijlstra",
year = "2012",
doi = "10.1186/1743-0003-9-75",
language = "English",
volume = "9",
pages = "75",
journal = "Journal of Neuroengineering and Rehabilitation",
issn = "1743-0003",
publisher = "BioMed Central",

}

RIS

TY - JOUR

T1 - Sit-stand and stand-sit transitions in older adults and patients with Parkinson's disease: event detection based on motion sensors versus force plates

AU - Zijlstra, Agnes

AU - Mancini, Martina

AU - Lindemann, Ulrich

AU - Chiari, Lorenzo

AU - Zijlstra, Wiebren

PY - 2012

Y1 - 2012

N2 - Background!!Motion sensors offer the possibility to obtain spatiotemporal measures of mobility-related activities such as sit-stand and stand-sit transitions. However, the application of new sensor-based methods for assessing sit-stand-sit performance requires the detection of crucial events such as seat on/off in the sensor-based data. Therefore, the aim of this study was to evaluate the agreement of detecting sit-stand and stand-sit events based on a novel body-fixed-sensor method with a force-plate based analysis.!!Methods!!Twelve older adults and 10 patients with mild to moderate Parkinson's disease with mean age of 70 years performed sit-stand-sit movements while trunk movements were measured with a sensor-unit at vertebrae L2-L4 and reaction forces were measured with separate force plates below the feet and chair. Movement onsets and ends were determined. In addition, seat off and seat on were determined based on forces acting on the chair. Data analysis focused on the agreement of the timing of sit-stand and stand-sit events as detected by the two methods.!!Results!!For the start and end of standing-up, only small delays existed for the start of forward trunk rotation and end of backward trunk rotation compared to movement onset/end as detected in the force-plate data. The end of forward trunk rotation had a small and consistent delay compared to seat off, whereas during sitting-down, the end of forward trunk rotation occurred earlier in relation to seat on. In detecting the end of sitting-down, backward trunk rotation ended after reaching the minimum in the below-feet vertical force signal. Since only small time differences existed between the two methods for detecting the start of sitting-down, longer movement durations were found for the sensor-based method. Relative agreement between the two methods in assessing movement duration was high (i.e. ICCs $ 0.75), except for duration of standing-up in the Parkinson's patients (ICC = 0.61).!!Conclusions!!This study demonstrated high agreement of body-fixed-sensor based detection of sit-stand and stand-sit events with that based on force plates in older adults and patients with mild to moderate Parkinson's disease. Further development and testing is needed to establish reliability for unstandardized performance in clinical and home settings.

AB - Background!!Motion sensors offer the possibility to obtain spatiotemporal measures of mobility-related activities such as sit-stand and stand-sit transitions. However, the application of new sensor-based methods for assessing sit-stand-sit performance requires the detection of crucial events such as seat on/off in the sensor-based data. Therefore, the aim of this study was to evaluate the agreement of detecting sit-stand and stand-sit events based on a novel body-fixed-sensor method with a force-plate based analysis.!!Methods!!Twelve older adults and 10 patients with mild to moderate Parkinson's disease with mean age of 70 years performed sit-stand-sit movements while trunk movements were measured with a sensor-unit at vertebrae L2-L4 and reaction forces were measured with separate force plates below the feet and chair. Movement onsets and ends were determined. In addition, seat off and seat on were determined based on forces acting on the chair. Data analysis focused on the agreement of the timing of sit-stand and stand-sit events as detected by the two methods.!!Results!!For the start and end of standing-up, only small delays existed for the start of forward trunk rotation and end of backward trunk rotation compared to movement onset/end as detected in the force-plate data. The end of forward trunk rotation had a small and consistent delay compared to seat off, whereas during sitting-down, the end of forward trunk rotation occurred earlier in relation to seat on. In detecting the end of sitting-down, backward trunk rotation ended after reaching the minimum in the below-feet vertical force signal. Since only small time differences existed between the two methods for detecting the start of sitting-down, longer movement durations were found for the sensor-based method. Relative agreement between the two methods in assessing movement duration was high (i.e. ICCs $ 0.75), except for duration of standing-up in the Parkinson's patients (ICC = 0.61).!!Conclusions!!This study demonstrated high agreement of body-fixed-sensor based detection of sit-stand and stand-sit events with that based on force plates in older adults and patients with mild to moderate Parkinson's disease. Further development and testing is needed to establish reliability for unstandardized performance in clinical and home settings.

KW - Acceleration

KW - Aged

KW - Aged, 80 and over

KW - Biomechanics

KW - Data Interpretation, Statistical

KW - Female

KW - Humans

KW - Independent Living

KW - Lumbar Vertebrae/physiology

KW - Male

KW - Middle Aged

KW - Mobility Limitation

KW - Motion

KW - Movement/physiology

KW - Parkinson Disease/physiopathology

KW - Posture/physiology

U2 - 10.1186/1743-0003-9-75

DO - 10.1186/1743-0003-9-75

M3 - Journal articles

VL - 9

SP - 75

JO - Journal of Neuroengineering and Rehabilitation

JF - Journal of Neuroengineering and Rehabilitation

SN - 1743-0003

ER -

ID: 28888