Contribution of muscle series elasticity to maximum performance in drop jumping

Research output: Contribution to journalJournal articlesResearchpeer-review

Authors

Research units

Details

The contribution of muscle in-series compliance on maximum performance of the muscle tendon complex was investigated using a forward dynamic computer simulation. The model of the human body contains 8 Hill-type muscles of the lower extremities. Muscle activation is optimized as a function of time, so that maximum drop jump height is achieved by the model. It is shown that the muscle series elastic energy stored in the downward phase provides a considerable contribution (32%) to the total muscle energy in the push-off phase. Furthermore, by the return of stored elastic energy all muscle contractile elements can reduce their shortening velocity up to 63% during push-off to develop a higher force due to their force velocity properties. The additional stretch taken up by the muscle series elastic element allows only m. rectus femoris to work closer to its optimal length, due to its force length properties. Therefore the contribution of the series elastic element to muscle performance in maximum height drop jumping is to store and return energy, and at the same time to increase the force producing ability of the contractile elements during push-off.

Original languageEnglish
JournalJournal of applied biomechanics
Volume22
Issue number1
Pages (from-to)3-13
Number of pages11
ISSN1065-8483
Publication statusPublished - 01.02.2006

ID: 21627

View graph of relations