Effect of elite sprinters’ toe flexor strength on sprint performance

Jan-Peter Goldmann*, Marvin Zedler

*Corresponding author for this work

Publication: Chapter in Book/Report/Conference proceedingConference contribution - Published abstract for conference with selection processResearchpeer-review

234 Downloads (Pure)

Abstract

INTRODUCTION: There is some evidence that intrinsic foot muscles propel the body forward during running (1). Nearly 80% of intrinsic foot muscles consists of toe flexor muscles (TFM) (2), whose strength capacity create a good prerequisite for enhanced performances in horizontal movement directions (3). For being able to run fast, we hypothesized that i) elite sprinters have stronger TFM than a group of sport students, and ii) there is a correlation between elite sprinters’ personal best and their TFM strength. METHODS: 18 male sprinters (21 ± 4 y, 77 ± 5 kg, 1.82 ± 0.04 m) of the German national team with an average 100 m personal best of 10.42 ± 0.21 s and a control group of sport students (n = 28, 25 ± 3 y, 77 ± 8 kg, 1.83 ± 0.06 m) performed three maximum voluntary isometric contractions of TFM for each foot. TFM strength was determined by measuring the moment about the transverse axis of a custom-made dynamometer in 25 degrees toe dorsiflexion. The external moments of force about the axis represented the moments of force produced by the TFM (3). The best of three trials was used for further analysis. Maximum moments were determined as the mean value of a 2 s time window of the plateau region. Statistics: Kolmogorov-Smirnov, unpaired t-test, Pearson correlation. RESULTS: TFM strength significantly differed (p < 0.05) between sprinters (left: 0.29 ± 0.08 Nm/kg, right: 0.29 ± 0.09 Nm/kg) and non-sprinters (left: 0.22 ± 0.05 Nm/kg, p = 0.001, right: 0.25 ± 0.06 Nm/kg, p = 0.03). Sprinters’ TFM strength did not correlate with 100 m personal best (r = 0.25, p = 0.31). CONCLUSION: Elite sprinters showed 16% to 31% stronger TFM than non-sprinters, but TFM strength was not associated with sprint performance within this homogenous group of elite sprinters. This is in accordance with the findings that foot muscles are more developed in sprinters than in non-sprinters, but muscle sizes may not contribute to achieve superior sprint performance (4). Since a heavy resistance strength-trained group demonstrated values of 0.38 ± 0.07 Nm/kg and 0.40 ± 0.08 Nm/kg for the left and right foot (3), respectively, with the same dynamometer, sprinters have the potential to increase TFM strength by 38%.
Original languageEnglish
Title of host publication26th Annual Congress of the European College of Sport Science, 8th-10th September 2021 : Book of Abstracts
EditorsFlemming Dela, Jørn Wulff Helge, Erich Müller, Elias Tsolakidis
Number of pages2
Place of PublicationKöln
PublisherECSS
Publication date08.09.2021
Pages190-191
ISBN (Electronic)978-3-9818414-4-2
Publication statusPublished - 08.09.2021
EventAnnual Congress of the European College of Sport Science: ECSS Virtual Congress - Online
Duration: 08.09.202110.09.2021
Conference number: 26
https://sport-science.org/index.php/congress/ecss-2021

Fingerprint

Dive into the research topics of 'Effect of elite sprinters’ toe flexor strength on sprint performance'. Together they form a unique fingerprint.

Citation