Effects of Endurance Exercise Bouts in Hypoxia, Hyperoxia, and Normoxia on mTOR-Related Protein Signaling in Human Skeletal Muscle

Research output: Contribution to journalJournal articlesResearchpeer-review

Standard

Harvard

APA

Vancouver

Bibtex

@article{6d037202cf0648e983ef1bd8281981bd,
title = "Effects of Endurance Exercise Bouts in Hypoxia, Hyperoxia, and Normoxia on mTOR-Related Protein Signaling in Human Skeletal Muscle",
abstract = "Przyklenk, A, Aussieker, T, Gutmann, B, Schiffer, T, Brinkmann, C, Str{\"u}der, HK, Bloch, W, Mierau, A, and Gehlert, S. Effects of endurance exercise bouts in hypoxia, hyperoxia, and normoxia on mTOR-related protein signaling in human skeletal muscle. J Strength Cond Res XX(X): 000-000, 2018-This study investigated the effects of short-term hypoxia (HY), hyperoxia (PER), and normoxia on anabolic signaling proteins in response to an acute bout of moderate endurance exercise (EEX) before and after an endurance exercise training intervention. Eleven healthy male subjects conducted one-legged cycling endurance exercise (3 × 30 min·wk for 4 weeks). One leg was trained under hypoxic (12{\%} O2) or hyperoxic conditions (in a randomized cross-over design), and the other leg was trained in normoxia (20.9{\%} O2) at the same relative workload. Musculus vastus lateralis biopsies were taken at baseline (T0) as well as immediately after the first (T1) and last (T2) training session to analyze anabolic signaling proteins and the myofiber cross-sectional area (FCSA). No significant differences were detected for FCSA between T0 and T2 under all oxygen conditions (p > 0.05). No significant differences (p > 0.05) were observed for BNIP3, phosphorylated RSK1, ERK1/2, FoxO3a, mTOR, and S6K1 between all conditions and time points. Phosphorylated Akt/PKB decreased significantly (p < 0.05) at T1 in PER and at T2 in HY and PER. Phosphorylated rpS6 decreased significantly (p < 0.05) at T1 only in PER, whereas nonsignificant increases were shown in HY at T2 (p = 0.10). Despite no significant regulations, considerable reductions in eEF2 phosphorylation were detected in HY at T1 and T2 (p = 0.11 and p = 0.12, respectively). Short-term hypoxia in combination with moderate EEX induces favorable acute anabolic signaling responses in human skeletal muscle.",
keywords = "Journal Article",
author = "Axel Przyklenk and Thorben Aussieker and Boris Gutmann and Thorsten Schiffer and Christian Brinkmann and Str{\"u}der, {Heiko K} and Wilhelm Bloch and Andreas Mierau and Sebastian Gehlert",
note = "Ahead of print",
year = "2018",
month = "7",
day = "17",
doi = "10.1519/JSC.0000000000002753",
language = "English",
journal = "Journal of strength and conditioning research / National Strength & Conditioning Association",
issn = "1064-8011",
publisher = "NSCA National Strength and Conditioning Association",

}

RIS

TY - JOUR

T1 - Effects of Endurance Exercise Bouts in Hypoxia, Hyperoxia, and Normoxia on mTOR-Related Protein Signaling in Human Skeletal Muscle

AU - Przyklenk, Axel

AU - Aussieker, Thorben

AU - Gutmann, Boris

AU - Schiffer, Thorsten

AU - Brinkmann, Christian

AU - Strüder, Heiko K

AU - Bloch, Wilhelm

AU - Mierau, Andreas

AU - Gehlert, Sebastian

N1 - Ahead of print

PY - 2018/7/17

Y1 - 2018/7/17

N2 - Przyklenk, A, Aussieker, T, Gutmann, B, Schiffer, T, Brinkmann, C, Strüder, HK, Bloch, W, Mierau, A, and Gehlert, S. Effects of endurance exercise bouts in hypoxia, hyperoxia, and normoxia on mTOR-related protein signaling in human skeletal muscle. J Strength Cond Res XX(X): 000-000, 2018-This study investigated the effects of short-term hypoxia (HY), hyperoxia (PER), and normoxia on anabolic signaling proteins in response to an acute bout of moderate endurance exercise (EEX) before and after an endurance exercise training intervention. Eleven healthy male subjects conducted one-legged cycling endurance exercise (3 × 30 min·wk for 4 weeks). One leg was trained under hypoxic (12% O2) or hyperoxic conditions (in a randomized cross-over design), and the other leg was trained in normoxia (20.9% O2) at the same relative workload. Musculus vastus lateralis biopsies were taken at baseline (T0) as well as immediately after the first (T1) and last (T2) training session to analyze anabolic signaling proteins and the myofiber cross-sectional area (FCSA). No significant differences were detected for FCSA between T0 and T2 under all oxygen conditions (p > 0.05). No significant differences (p > 0.05) were observed for BNIP3, phosphorylated RSK1, ERK1/2, FoxO3a, mTOR, and S6K1 between all conditions and time points. Phosphorylated Akt/PKB decreased significantly (p < 0.05) at T1 in PER and at T2 in HY and PER. Phosphorylated rpS6 decreased significantly (p < 0.05) at T1 only in PER, whereas nonsignificant increases were shown in HY at T2 (p = 0.10). Despite no significant regulations, considerable reductions in eEF2 phosphorylation were detected in HY at T1 and T2 (p = 0.11 and p = 0.12, respectively). Short-term hypoxia in combination with moderate EEX induces favorable acute anabolic signaling responses in human skeletal muscle.

AB - Przyklenk, A, Aussieker, T, Gutmann, B, Schiffer, T, Brinkmann, C, Strüder, HK, Bloch, W, Mierau, A, and Gehlert, S. Effects of endurance exercise bouts in hypoxia, hyperoxia, and normoxia on mTOR-related protein signaling in human skeletal muscle. J Strength Cond Res XX(X): 000-000, 2018-This study investigated the effects of short-term hypoxia (HY), hyperoxia (PER), and normoxia on anabolic signaling proteins in response to an acute bout of moderate endurance exercise (EEX) before and after an endurance exercise training intervention. Eleven healthy male subjects conducted one-legged cycling endurance exercise (3 × 30 min·wk for 4 weeks). One leg was trained under hypoxic (12% O2) or hyperoxic conditions (in a randomized cross-over design), and the other leg was trained in normoxia (20.9% O2) at the same relative workload. Musculus vastus lateralis biopsies were taken at baseline (T0) as well as immediately after the first (T1) and last (T2) training session to analyze anabolic signaling proteins and the myofiber cross-sectional area (FCSA). No significant differences were detected for FCSA between T0 and T2 under all oxygen conditions (p > 0.05). No significant differences (p > 0.05) were observed for BNIP3, phosphorylated RSK1, ERK1/2, FoxO3a, mTOR, and S6K1 between all conditions and time points. Phosphorylated Akt/PKB decreased significantly (p < 0.05) at T1 in PER and at T2 in HY and PER. Phosphorylated rpS6 decreased significantly (p < 0.05) at T1 only in PER, whereas nonsignificant increases were shown in HY at T2 (p = 0.10). Despite no significant regulations, considerable reductions in eEF2 phosphorylation were detected in HY at T1 and T2 (p = 0.11 and p = 0.12, respectively). Short-term hypoxia in combination with moderate EEX induces favorable acute anabolic signaling responses in human skeletal muscle.

KW - Journal Article

U2 - 10.1519/JSC.0000000000002753

DO - 10.1519/JSC.0000000000002753

M3 - Journal articles

JO - Journal of strength and conditioning research / National Strength & Conditioning Association

JF - Journal of strength and conditioning research / National Strength & Conditioning Association

SN - 1064-8011

ER -

ID: 3443043