Effects of Whole-Body Electromyostimulation on Strength-, Sprint-, and Jump Performance in Moderately Trained Young Adults: A Mini-Meta-Analysis of Five Homogenous RCTs of Our Work Group

Research output: Contribution to journalScientific review articlesResearch

Standard

Harvard

APA

Vancouver

Bibtex

@article{702e2b8dae9a444caef344ad544c0d42,
title = "Effects of Whole-Body Electromyostimulation on Strength-, Sprint-, and Jump Performance in Moderately Trained Young Adults: A Mini-Meta-Analysis of Five Homogenous RCTs of Our Work Group",
abstract = "Background: Whole-body electromyostimulation (WB-EMS) gained increasing interest in sports within recent years. However, few intervention studies have examined the effects of WB-EMS on trained subjects in comparison to conventional strength training. Objective: The aim of the present mini-meta-analysis of 5 recently conducted and published randomized controlled WB-EMS trails of our work group was to evaluate potentially favorable effects of WB-EMS in comparison to conventional strength training. Methods: We included parameter of selected leg muscle's strength and power as well as sprint and jump performance. All subjects were moderately trained athletes [>2 training sessions/week, >2 years of experience in strength training; experimental group (n = 58): 21.5 ± 3.3 y; 178 ± 8 cm; 74.0 ± 11 kg; control group (n = 54): 21.0 ± 2.3 y; 179.0 ± 9 cm; 72.6 ± 10 kg]. The following WB-EMS protocols were applied to the experimental group (EG): 2 WB-EMS sessions/week, bipolar current superimposed to dynamic exercises, 85 Hz, 350 μs, 70% of the individual pain threshold amperage. The control groups (CG) underwent the same training protocols without WB-EMS, but with external resistance. Results: Five extremely homogenous studies (all studies revealed an I2 = 0%) with 112 subjects in total were analyzed with respect to lower limb strength and power in leg curl, leg extension and leg press machines, sprint-and jump performance. Negligible effects in favor of WB-EMS were found for Fmax of leg muscle groups [SMD: 0.11 (90% CI: -0.08, 0.33), p = 0.73, I2 = 0%] and for CMJ [SMD: 0.01 (90% CI: -0.34, 0.33), p = 0.81, I2 = 0%]. Small effects, were found for linear sprint [SMD: 0.22 (90% CI: -0.15, 0.60), p = 0.77, I2 = 0%] in favor of the EMS-group compared to CON. Conclusion: We conclude that WB-EMS is a feasible complementary training stimulus for performance enhancement. However, additional effects on strength and power indices seem to be limited and sprint and jump-performance appear to be benefiting only slightly. Longer training periods and more frequent application times and a slightly larger stimulus could be investigated in larger samples to further elucidate beneficial effects of WB-EMS on performance parameters in athletes.",
author = "Nicolas Wirtz and Ulrike D{\"o}rmann and Florian Micke and Andr{\'e} Filipovic and Heinz Klein{\"o}der and Lars Donath",
note = "Copyright {\textcopyright} 2019 Wirtz, D{\"o}rmann, Micke, Filipovic, Klein{\"o}der and Donath.",
year = "2019",
month = nov,
day = "8",
doi = "10.3389/fphys.2019.01336",
language = "English",
volume = "10",
journal = "Frontiers in Physiology",
issn = "1664-042X",
publisher = "Frontiers Media S.A.",

}

RIS

TY - JOUR

T1 - Effects of Whole-Body Electromyostimulation on Strength-, Sprint-, and Jump Performance in Moderately Trained Young Adults

T2 - A Mini-Meta-Analysis of Five Homogenous RCTs of Our Work Group

AU - Wirtz, Nicolas

AU - Dörmann, Ulrike

AU - Micke, Florian

AU - Filipovic, André

AU - Kleinöder, Heinz

AU - Donath, Lars

N1 - Copyright © 2019 Wirtz, Dörmann, Micke, Filipovic, Kleinöder and Donath.

PY - 2019/11/8

Y1 - 2019/11/8

N2 - Background: Whole-body electromyostimulation (WB-EMS) gained increasing interest in sports within recent years. However, few intervention studies have examined the effects of WB-EMS on trained subjects in comparison to conventional strength training. Objective: The aim of the present mini-meta-analysis of 5 recently conducted and published randomized controlled WB-EMS trails of our work group was to evaluate potentially favorable effects of WB-EMS in comparison to conventional strength training. Methods: We included parameter of selected leg muscle's strength and power as well as sprint and jump performance. All subjects were moderately trained athletes [>2 training sessions/week, >2 years of experience in strength training; experimental group (n = 58): 21.5 ± 3.3 y; 178 ± 8 cm; 74.0 ± 11 kg; control group (n = 54): 21.0 ± 2.3 y; 179.0 ± 9 cm; 72.6 ± 10 kg]. The following WB-EMS protocols were applied to the experimental group (EG): 2 WB-EMS sessions/week, bipolar current superimposed to dynamic exercises, 85 Hz, 350 μs, 70% of the individual pain threshold amperage. The control groups (CG) underwent the same training protocols without WB-EMS, but with external resistance. Results: Five extremely homogenous studies (all studies revealed an I2 = 0%) with 112 subjects in total were analyzed with respect to lower limb strength and power in leg curl, leg extension and leg press machines, sprint-and jump performance. Negligible effects in favor of WB-EMS were found for Fmax of leg muscle groups [SMD: 0.11 (90% CI: -0.08, 0.33), p = 0.73, I2 = 0%] and for CMJ [SMD: 0.01 (90% CI: -0.34, 0.33), p = 0.81, I2 = 0%]. Small effects, were found for linear sprint [SMD: 0.22 (90% CI: -0.15, 0.60), p = 0.77, I2 = 0%] in favor of the EMS-group compared to CON. Conclusion: We conclude that WB-EMS is a feasible complementary training stimulus for performance enhancement. However, additional effects on strength and power indices seem to be limited and sprint and jump-performance appear to be benefiting only slightly. Longer training periods and more frequent application times and a slightly larger stimulus could be investigated in larger samples to further elucidate beneficial effects of WB-EMS on performance parameters in athletes.

AB - Background: Whole-body electromyostimulation (WB-EMS) gained increasing interest in sports within recent years. However, few intervention studies have examined the effects of WB-EMS on trained subjects in comparison to conventional strength training. Objective: The aim of the present mini-meta-analysis of 5 recently conducted and published randomized controlled WB-EMS trails of our work group was to evaluate potentially favorable effects of WB-EMS in comparison to conventional strength training. Methods: We included parameter of selected leg muscle's strength and power as well as sprint and jump performance. All subjects were moderately trained athletes [>2 training sessions/week, >2 years of experience in strength training; experimental group (n = 58): 21.5 ± 3.3 y; 178 ± 8 cm; 74.0 ± 11 kg; control group (n = 54): 21.0 ± 2.3 y; 179.0 ± 9 cm; 72.6 ± 10 kg]. The following WB-EMS protocols were applied to the experimental group (EG): 2 WB-EMS sessions/week, bipolar current superimposed to dynamic exercises, 85 Hz, 350 μs, 70% of the individual pain threshold amperage. The control groups (CG) underwent the same training protocols without WB-EMS, but with external resistance. Results: Five extremely homogenous studies (all studies revealed an I2 = 0%) with 112 subjects in total were analyzed with respect to lower limb strength and power in leg curl, leg extension and leg press machines, sprint-and jump performance. Negligible effects in favor of WB-EMS were found for Fmax of leg muscle groups [SMD: 0.11 (90% CI: -0.08, 0.33), p = 0.73, I2 = 0%] and for CMJ [SMD: 0.01 (90% CI: -0.34, 0.33), p = 0.81, I2 = 0%]. Small effects, were found for linear sprint [SMD: 0.22 (90% CI: -0.15, 0.60), p = 0.77, I2 = 0%] in favor of the EMS-group compared to CON. Conclusion: We conclude that WB-EMS is a feasible complementary training stimulus for performance enhancement. However, additional effects on strength and power indices seem to be limited and sprint and jump-performance appear to be benefiting only slightly. Longer training periods and more frequent application times and a slightly larger stimulus could be investigated in larger samples to further elucidate beneficial effects of WB-EMS on performance parameters in athletes.

U2 - 10.3389/fphys.2019.01336

DO - 10.3389/fphys.2019.01336

M3 - Scientific review articles

C2 - 31780950

VL - 10

JO - Frontiers in Physiology

JF - Frontiers in Physiology

SN - 1664-042X

M1 - 1336

ER -

ID: 5218615