Electrocortical and Hemodynamic Changes within the Brain during Incremental Bicycle Exercise in Normoxia and Hypoxia: A Combined EEG/NIRS Study

Research output: Contribution to journalJournal articlesResearchpeer-review

Authors

Research units

Details

The correlation of NIRS (near-infrared spectroscopy) and EEG (electro-cortical activity) in exercise studies has never been shown. Eight sport students performed an incremental bicycle exercise test under normoxic and hypoxic (12.7% O2) conditions respectively. EEG and NIRS recordings of the prefrontal cortex (PFC, Brodmann area 10. 46) were performed synchronously to shed light on their correlation. ANOVA revealed a higher absolute workload (231.3 ± 37.2 W), and relative PFC oxygenation under normoxic conditions, whereas hypoxic conditions resulted in earlier exhaustion (200 ± 26.7 W) and reduced PFC oxygenation. NIRS parameters increased remarkably with exercise intensity (P < 0.001) and differed between conditions (O2Hb: P < 0.001; HHb: P = 0.023; tHb: P = 0.016) and hemispheres (O2Hb: P = 0.023). For EEG, higher prefrontal cortical current density during compared to pre and post exercise was revealed for both conditions (P < 0.001). No difference between conditions and hemispheres were found. In conclusion, brain cortical activity is not impaired by hypoxia. No correlation between NIRS and EEG, but a moderate correlation between EEG and cardio-vascular parameters and a moderate to high correlation between NIRS and cardio-vascular parameters were found. The results emphasize that the transfer of EEG and NIRS results need to be done with caution.
Original languageEnglish
JournalJournal of Sports Science
Volume3
Issue number3
Pages (from-to)105-116
Number of pages12
ISSN2332-7839
DOIs
Publication statusPublished - 05.2015

ID: 836486

View graph of relations