Influence of exercise on serotonergic neuromodulation in the brain

Research output: Contribution to journalJournal articlesResearchpeer-review


Research units


Implications of exercise on serotonergic neuromodulation in the brain have been investigated in two studies. Acute paroxetine (selective serotonin (5-HT) reuptake inhibitor) administration to endurance athletes, who performed a cycle ergometer test to exhaustion at moderate intensity, reduced time to exhaustion and post exercise cognitive performance in comparison to trials with placebo or BCAA administration. Furthermore, during a 3-week moderate endurance training of sedentary males basaline values of Bmax of 5-HT transporters (5-HTT) and 5-HT2A receptors (5-HT(2A)R) on isolated platelet membranes increased while plasma prolactin (PRL) concentrations decreased as well as mood and physical efficiency improved. In contrast, after an excessive training program over four weeks, well-trained endurance athletes showed no change of Bmax of 5-HTT, but a decline of 5-HT(2A)R density and an increase in basal plasma PRL concentration. Mood was impaired and central fatigue increased. Thus, the impact of exercise on 5-HT neurotransmission may depend on training state of athletes and extent of exertion. The theoretical background of the implication of exercise and the effect of long lasting exhaustive exercise in athletes on mental and physical efficiency or central fatigue are evaluated. The significance of the primary disturbance of central neuromodulation and dysfunction of 5-HTT, 5-HT receptor subtypes and the phosphoinositol signal transduction as well as the limited modulation capacity of the 5-HT system in overstrain are also addressed.

Original languageEnglish
JournalAmino acids
Issue number1
Pages (from-to)35-47
Number of pages13
Publication statusPublished - 01.01.2001

ID: 40154

View graph of relations