Similar Pain Intensity Reductions and Trunk Strength Improvements Following Whole-Body Electromyostimulation vs. Whole-Body Vibration vs. Conventional Back-Strengthening Training in Chronic Non-specific Low Back Pain Patients: A Three-Armed Randomized Controlled Trial

Publications: Contribution to journalJournal articlesResearchpeer-review

Standard

Harvard

APA

Vancouver

Bibtex

@article{47134def69784512a91865c1a158f1ff,
title = "Similar Pain Intensity Reductions and Trunk Strength Improvements Following Whole-Body Electromyostimulation vs. Whole-Body Vibration vs. Conventional Back-Strengthening Training in Chronic Non-specific Low Back Pain Patients: A Three-Armed Randomized Controlled Trial",
abstract = "The aim of this multicenter trial was to compare the effects of whole-body electromyostimulation (WB-EMS) and whole-body vibration (WBV) with conventional back-strengthening training (CT) on changes in mean back pain intensity (MPI) and trunk strength in patients suffering from chronic non-specific low back pain (CNLBP). Two-hundred and forty CNLBP patients (40–70 years; 62% female) were randomly assigned to three intervention arms (WB-EMS: n = 80 vs. WBV: n = 80 vs. CT: n = 80). All training intervention programs were performed for 12 weeks in their usual commercial training setting. Before and during the last 4 weeks of the intervention, MPI was recorded using a 4-week pain diary. Additionally, maximal isometric trunk extension and -flexion strength was assessed on the BackCheck{\textregistered} machine. A moderate but significant decrease of MPI was observed in all groups (WB-EMS: 29.7 ± 39.1% (SMD 0.50) vs. WBV: 30.3 ± 39.3% (SMD 0.57) vs. CT: 30.5 ± 39.6% (SMD 0.59); p < 0.001). Similar findings were observed for maximal isometric strength parameters with a significant increase in all groups (extension: WB-EMS: 17.1 ± 25.5% vs. WBV: 16.2 ± 23.6% vs. CT: 21.6 ± 27.5%; p < 0.001; flexion: WB-EMS: 13.3 ± 25.6% vs. WBV: 13.9 ± 24.0% vs. CT: 13.9 ± 25.4%; p < 0.001). No significant interaction effects for MPI (p = 0.920) and strength parameters (extension: p = 0.436; flexion: p = 0.937) were observed. WB-EMS, WBV, and CT are comparably effective in improving MPI and trunk strength. However, training volume of WB-EMS was 43 or 62% lower, compared with CT and WBV.",
keywords = "lumbar spine pain, electrical stimulation, MVC, strength training, vibration training",
author = "Florian Micke and Anja Weissenfels and Nicolas Wirtz and {von Stengel}, Simon and Ulrike D{\"o}rmann and Matthias Kohl and Heinz Klein{\"o}der and Lars Donath and Wolfgang Kemmler",
note = "Copyright {\textcopyright} 2021 Micke, Weissenfels, Wirtz, von Stengel, D{\"o}rmann, Kohl, Klein{\"o}der, Donath and Kemmler.",
year = "2021",
month = apr,
day = "13",
doi = "10.3389/fphys.2021.664991",
language = "English",
volume = "12",
pages = "1--9",
journal = "Frontiers in Physiology",
issn = "1664-042X",
publisher = "Frontiers Media S.A.",

}

RIS

TY - JOUR

T1 - Similar Pain Intensity Reductions and Trunk Strength Improvements Following Whole-Body Electromyostimulation vs. Whole-Body Vibration vs. Conventional Back-Strengthening Training in Chronic Non-specific Low Back Pain Patients

T2 - A Three-Armed Randomized Controlled Trial

AU - Micke, Florian

AU - Weissenfels, Anja

AU - Wirtz, Nicolas

AU - von Stengel, Simon

AU - Dörmann, Ulrike

AU - Kohl, Matthias

AU - Kleinöder, Heinz

AU - Donath, Lars

AU - Kemmler, Wolfgang

N1 - Copyright © 2021 Micke, Weissenfels, Wirtz, von Stengel, Dörmann, Kohl, Kleinöder, Donath and Kemmler.

PY - 2021/4/13

Y1 - 2021/4/13

N2 - The aim of this multicenter trial was to compare the effects of whole-body electromyostimulation (WB-EMS) and whole-body vibration (WBV) with conventional back-strengthening training (CT) on changes in mean back pain intensity (MPI) and trunk strength in patients suffering from chronic non-specific low back pain (CNLBP). Two-hundred and forty CNLBP patients (40–70 years; 62% female) were randomly assigned to three intervention arms (WB-EMS: n = 80 vs. WBV: n = 80 vs. CT: n = 80). All training intervention programs were performed for 12 weeks in their usual commercial training setting. Before and during the last 4 weeks of the intervention, MPI was recorded using a 4-week pain diary. Additionally, maximal isometric trunk extension and -flexion strength was assessed on the BackCheck® machine. A moderate but significant decrease of MPI was observed in all groups (WB-EMS: 29.7 ± 39.1% (SMD 0.50) vs. WBV: 30.3 ± 39.3% (SMD 0.57) vs. CT: 30.5 ± 39.6% (SMD 0.59); p < 0.001). Similar findings were observed for maximal isometric strength parameters with a significant increase in all groups (extension: WB-EMS: 17.1 ± 25.5% vs. WBV: 16.2 ± 23.6% vs. CT: 21.6 ± 27.5%; p < 0.001; flexion: WB-EMS: 13.3 ± 25.6% vs. WBV: 13.9 ± 24.0% vs. CT: 13.9 ± 25.4%; p < 0.001). No significant interaction effects for MPI (p = 0.920) and strength parameters (extension: p = 0.436; flexion: p = 0.937) were observed. WB-EMS, WBV, and CT are comparably effective in improving MPI and trunk strength. However, training volume of WB-EMS was 43 or 62% lower, compared with CT and WBV.

AB - The aim of this multicenter trial was to compare the effects of whole-body electromyostimulation (WB-EMS) and whole-body vibration (WBV) with conventional back-strengthening training (CT) on changes in mean back pain intensity (MPI) and trunk strength in patients suffering from chronic non-specific low back pain (CNLBP). Two-hundred and forty CNLBP patients (40–70 years; 62% female) were randomly assigned to three intervention arms (WB-EMS: n = 80 vs. WBV: n = 80 vs. CT: n = 80). All training intervention programs were performed for 12 weeks in their usual commercial training setting. Before and during the last 4 weeks of the intervention, MPI was recorded using a 4-week pain diary. Additionally, maximal isometric trunk extension and -flexion strength was assessed on the BackCheck® machine. A moderate but significant decrease of MPI was observed in all groups (WB-EMS: 29.7 ± 39.1% (SMD 0.50) vs. WBV: 30.3 ± 39.3% (SMD 0.57) vs. CT: 30.5 ± 39.6% (SMD 0.59); p < 0.001). Similar findings were observed for maximal isometric strength parameters with a significant increase in all groups (extension: WB-EMS: 17.1 ± 25.5% vs. WBV: 16.2 ± 23.6% vs. CT: 21.6 ± 27.5%; p < 0.001; flexion: WB-EMS: 13.3 ± 25.6% vs. WBV: 13.9 ± 24.0% vs. CT: 13.9 ± 25.4%; p < 0.001). No significant interaction effects for MPI (p = 0.920) and strength parameters (extension: p = 0.436; flexion: p = 0.937) were observed. WB-EMS, WBV, and CT are comparably effective in improving MPI and trunk strength. However, training volume of WB-EMS was 43 or 62% lower, compared with CT and WBV.

KW - lumbar spine pain

KW - electrical stimulation

KW - MVC

KW - strength training

KW - vibration training

UR - https://www.mendeley.com/catalogue/f7a34eac-5edf-316b-9a42-2218ea1b53e3/

U2 - 10.3389/fphys.2021.664991

DO - 10.3389/fphys.2021.664991

M3 - Journal articles

C2 - 33927646

VL - 12

SP - 1

EP - 9

JO - Frontiers in Physiology

JF - Frontiers in Physiology

SN - 1664-042X

M1 - 664991

ER -

ID: 6204774