Publications: Contribution to journal › Journal articles › Research › peer-review
Similar Pain Intensity Reductions and Trunk Strength Improvements Following Whole-Body Electromyostimulation vs. Whole-Body Vibration vs. Conventional Back-Strengthening Training in Chronic Non-specific Low Back Pain Patients : A Three-Armed Randomized Controlled Trial. / Micke, Florian; Weissenfels, Anja; Wirtz, Nicolas et al.
In: Frontiers in Physiology, Vol. 12, 664991, 13.04.2021, p. 1-9.Publications: Contribution to journal › Journal articles › Research › peer-review
}
TY - JOUR
T1 - Similar Pain Intensity Reductions and Trunk Strength Improvements Following Whole-Body Electromyostimulation vs. Whole-Body Vibration vs. Conventional Back-Strengthening Training in Chronic Non-specific Low Back Pain Patients
T2 - A Three-Armed Randomized Controlled Trial
AU - Micke, Florian
AU - Weissenfels, Anja
AU - Wirtz, Nicolas
AU - von Stengel, Simon
AU - Dörmann, Ulrike
AU - Kohl, Matthias
AU - Kleinöder, Heinz
AU - Donath, Lars
AU - Kemmler, Wolfgang
N1 - Copyright © 2021 Micke, Weissenfels, Wirtz, von Stengel, Dörmann, Kohl, Kleinöder, Donath and Kemmler.
PY - 2021/4/13
Y1 - 2021/4/13
N2 - The aim of this multicenter trial was to compare the effects of whole-body electromyostimulation (WB-EMS) and whole-body vibration (WBV) with conventional back-strengthening training (CT) on changes in mean back pain intensity (MPI) and trunk strength in patients suffering from chronic non-specific low back pain (CNLBP). Two-hundred and forty CNLBP patients (40–70 years; 62% female) were randomly assigned to three intervention arms (WB-EMS: n = 80 vs. WBV: n = 80 vs. CT: n = 80). All training intervention programs were performed for 12 weeks in their usual commercial training setting. Before and during the last 4 weeks of the intervention, MPI was recorded using a 4-week pain diary. Additionally, maximal isometric trunk extension and -flexion strength was assessed on the BackCheck® machine. A moderate but significant decrease of MPI was observed in all groups (WB-EMS: 29.7 ± 39.1% (SMD 0.50) vs. WBV: 30.3 ± 39.3% (SMD 0.57) vs. CT: 30.5 ± 39.6% (SMD 0.59); p < 0.001). Similar findings were observed for maximal isometric strength parameters with a significant increase in all groups (extension: WB-EMS: 17.1 ± 25.5% vs. WBV: 16.2 ± 23.6% vs. CT: 21.6 ± 27.5%; p < 0.001; flexion: WB-EMS: 13.3 ± 25.6% vs. WBV: 13.9 ± 24.0% vs. CT: 13.9 ± 25.4%; p < 0.001). No significant interaction effects for MPI (p = 0.920) and strength parameters (extension: p = 0.436; flexion: p = 0.937) were observed. WB-EMS, WBV, and CT are comparably effective in improving MPI and trunk strength. However, training volume of WB-EMS was 43 or 62% lower, compared with CT and WBV.
AB - The aim of this multicenter trial was to compare the effects of whole-body electromyostimulation (WB-EMS) and whole-body vibration (WBV) with conventional back-strengthening training (CT) on changes in mean back pain intensity (MPI) and trunk strength in patients suffering from chronic non-specific low back pain (CNLBP). Two-hundred and forty CNLBP patients (40–70 years; 62% female) were randomly assigned to three intervention arms (WB-EMS: n = 80 vs. WBV: n = 80 vs. CT: n = 80). All training intervention programs were performed for 12 weeks in their usual commercial training setting. Before and during the last 4 weeks of the intervention, MPI was recorded using a 4-week pain diary. Additionally, maximal isometric trunk extension and -flexion strength was assessed on the BackCheck® machine. A moderate but significant decrease of MPI was observed in all groups (WB-EMS: 29.7 ± 39.1% (SMD 0.50) vs. WBV: 30.3 ± 39.3% (SMD 0.57) vs. CT: 30.5 ± 39.6% (SMD 0.59); p < 0.001). Similar findings were observed for maximal isometric strength parameters with a significant increase in all groups (extension: WB-EMS: 17.1 ± 25.5% vs. WBV: 16.2 ± 23.6% vs. CT: 21.6 ± 27.5%; p < 0.001; flexion: WB-EMS: 13.3 ± 25.6% vs. WBV: 13.9 ± 24.0% vs. CT: 13.9 ± 25.4%; p < 0.001). No significant interaction effects for MPI (p = 0.920) and strength parameters (extension: p = 0.436; flexion: p = 0.937) were observed. WB-EMS, WBV, and CT are comparably effective in improving MPI and trunk strength. However, training volume of WB-EMS was 43 or 62% lower, compared with CT and WBV.
KW - lumbar spine pain
KW - electrical stimulation
KW - MVC
KW - strength training
KW - vibration training
UR - https://www.mendeley.com/catalogue/f7a34eac-5edf-316b-9a42-2218ea1b53e3/
U2 - 10.3389/fphys.2021.664991
DO - 10.3389/fphys.2021.664991
M3 - Journal articles
C2 - 33927646
VL - 12
SP - 1
EP - 9
JO - Frontiers in Physiology
JF - Frontiers in Physiology
SN - 1664-042X
M1 - 664991
ER -
ID: 6204774