The Effect of Cycling-specific Vibration on Neuromuscular Performance

Publication: Contribution to journalJournal articlesResearchpeer-review

Abstract

PURPOSE: This study aimed to provide an understanding of how surface-induced vibrations in cycling interfere with short-term neuromuscular performance.

METHODS: The study was conducted as a cross-sectional single cohort trial. Thirty trained cyclists participated (mass = 75.9 ± 8.9 kg, body height = 1.82 ± 0.05 m, V˙O2max = 63 ± 6.8 mL·kg-1⋅min-1). The experimental intervention included a systematic variation of the two independent variables: vibration (Vib: front dropout, 44 Hz, 4.1 mm; rear dropout, 38Hz, 3.5 mm; NoVib) and cranking power (LOW, 137 ± 14 W; MED, 221 ± 18 W; HIGH, 331 ± 65 W) from individual low to submaximal intensity. Dependent variables were transmitted accelerations to the body, muscular activation (gastrocnemius medialis, gastrocnemius lateralis, soleus, vastus lateralis, vastus medialis, rectus femoris, triceps brachii, flexor carpi ulnaris, and lumbar erector spinae), heart rate, and oxygen consumption.

RESULTS: The main findings show that the root-mean-square of local accelerations increased with vibration at the lower extremities, the torso, and the arms-shoulder system. The activation of gastrocnemius medialis, gastrocnemius lateralis, soleus, triceps brachii, and flexor carpi ulnaris increased significantly with vibration. The activation of vastus lateralis increased significantly with vibration only at HIGH cranking power. Oxygen consumption (+2.7%) and heart rate (+5%-7%) increased significantly in the presence of vibration.

CONCLUSIONS: Vibration is a full-body phenomenon. However, the impact of vibration on propulsion is limited as the main propulsive muscles at the thigh are not majorly affected. The demands on the cardiopulmonary and respiratory system increased slightly in the presence of vibration.

Original languageEnglish
JournalMedicine and science in sports and exercise
Volume53
Issue number5
Pages (from-to)936-944
Number of pages9
ISSN0195-9131
DOIs
Publication statusPublished - 05.2021

Research areas and keywords

  • Acceleration
  • Bicycling/physiology
  • Cross-Sectional Studies
  • Electromyography
  • Heart Rate/physiology
  • Humans
  • Lower Extremity/physiology
  • Male
  • Muscle Strength/physiology
  • Muscle, Skeletal/physiology
  • Musculoskeletal Physiological Phenomena
  • Oxygen Consumption/physiology
  • Quadriceps Muscle/physiology
  • Vibration

Fingerprint

Dive into the research topics of 'The Effect of Cycling-specific Vibration on Neuromuscular Performance'. Together they form a unique fingerprint.

Citation